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Abstract
The generalized discrete Hartley transforms (GDHTs) have proved to be an efficient alternative to

the generalized discrete Fourier transforms (GDFTs) for real-valued data applications. In this paper, the
development of direct computation of radix-2 decimation-in-time (DIT) algorithm for the fast calculation of
the GDHT of type-II (DHT-II) is presented. The mathematical analysis and the implementation of the
developed algorithm are derived, showing that this algorithm possesses a regular structure and can be
implemented in-place for efficient memory utilization.Theperformance of the proposed algorithm is
analyzed and the computational complexity is calculated for different transform lengths. A comparison
between this algorithm and existing DHT-II algorithms shows that it can be considered as a good
compromise between the structural and computational complexities.

Keywords: Generalized discrete Hartley transforms (GDHTs), discrete Hartley transform of type-II (DHT-
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1. Introduction
Over last years, the discrete Hartley transform (DHT) has gained popularity in the fields

of digital signal and image processing, as it possesses many desirable properties, used in many
applications [1-3]. In general, there are four types of this transform known as type-I, -II, -III and -
IV DHTs respectively. In the literature, the type-I DHT is just the DHT and other types are called
the generalized discrete Hartley transforms (GDHTs), because their definition contains shifts in
either time, frequency index or both indices. The GDHTs are also known as the W transforms
that were introduced by Z. Wang [4, 5], the only difference between them is that they use
different scaling factors in their definitions. If these scaling factors are ignored, the same fast
algorithms can be used for both GDHTs and W transforms. The (GDHT/W) transforms have
proven to be important tools in the signal processing and related fields, such as for fast
computation of different types of convolutions [6-9], filter banks, signal representations [10] and
many other applications.

The direct computation of the GDHTs is intensive and requires large arithmetic
operations of order N2, where N is the transform length; therefore fast GDHTs (GFHTs)
algorithms have been introduced to reduce the arithmetic complexity and implementation costs.
Among them, Hu et al. [11] proposed several fast algorithms for computing the GDHTs, Bi and
Chen [12] derived a split-radix algorithm for the computation of GDFTs and GDHTs. Chiper [13]
introduced an algorithm for decomposing DHT-II of length N using two adjacent N/2 sets of
coefficients. The aforementioned algorithms are focused on the sequences with length N being
power of two. Other fast algorithm for calculating DHT-II with length N being power of three is
introduced by Shuet al. [14] and for composite transform lengths is developed by Bi et al. [15].
Moreover, Shuet al. [16] developed a new fast algorithm for the direct computation of the (DHT-
II) based on decomposition of DHT-II into two DHTs of type-II of length N/2 that can be used to
solve such a problem.

While Shu’s algorithm is based on decimation-in-frequency (DIF) approach; however,
for any transform to stand as a good candidate for real time applications, its complete fast
algorithms need to be developed, such as the decimation-in-time (DIT) approach. Therefore, it
is the aim of this paper to develop such an algorithm for fast computation of the DHT-II.

The rest of the paper is organized as follows. Section 2 presents the derivation of the
new fast DIT algorithm for computing the DHT-II. The analysis of the computational complexity
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for the developed algorithm is given and comparison with the Hu’s algorithm is also provided in
Section 3. Finally, Section 4 concludes the paper.

2. Algorithm Derivation
The DHT-II transform for a real-valued sequence ( ) of length N is defined as [1]:
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and the corresponding inverse transform (called type-III DHT) is given by:
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where cas( ) = cos( ) + sin( ), = 2 / and is the transform length.
The decimation-in-time algorithm derivation begins by dividing the input sequence( )into its even ( ) and odd ( ) parts. Therefore (1)can be decomposed as:
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Using the following casproperty

=+ + -cas( ) cos( )cas( ) sin( )cas( )      (6)

cas(.) term in (5) can be simplified to:
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Therefore, ( ) can be decomposed further to yield:
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The second summation of (8) can be simplified further to
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Substituting (9) into (8) we get:
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where ( ) and ( − − 1) can be identified as two N/2 point DHT-II for odd part(2 + 1) of ( ), given by:

 

 

2

2

=0

=0

-1

2 +1
2 +1 2

-1

2 +1
2 +1 2

2

-2

2 1

- -1 2 1

( + ) ( )

( + ) ( )

( ) =

( ) =









N

N

n

n

k
n

k
n N

n n

n n

X k x cas

X k x cas

(11)

Replacing (4) and (10) into (3), we obtain the following recursive formula:
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For radix-2 algorithm, another point + needs to be computed. This point can be derived
using trigonometric identities and the periodicity property of DHT-II, we get:
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Examine (12) and (13), we realize that the in-place property of these decompositions is
not possible, due to the fact that the computation of ( ) and + points require ( )
as well as ( − − 1). However this difficulty can solve by additionally considering
decompositions for ( − − 1) and − − 1 points, as follows:
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Equations (12)-(15) can be implemented using an in-place butterfly structure shown in
Figure 1. An example for calculating a 16-point DHT-II using the developed algorithm is shown
in Figure 2.
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Figure 1. An in-place butterfly of radix-2 DHT-II DIT algorithm; where ( ) = (2 ⁄ ) and( ) = (2 ⁄ ), solid and dotted lines stand for additions and subtraction respectively
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Figure 2. The calculation of 16-point DHT-II using radix-2 DIT approach; where ( ) =(2 ⁄ )and ( ) = (2 ⁄ ), solid and dotted lines stand for additions and subtraction
respectively

3. Computational Complexity
The radix-2 DHT-II DIT algorithm combines four points together to formulate the in-

place butterflyshown in Figure 1. Each butterfly calculates four points and requires four
multiplications and six additions. In general, this algorithm requires log stages of butterfly
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computations in which each stage uses multiplications and 3 /2 additions. Therefore, the
calculation of the whole transform is satisfies:
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where ( ) and ( ) stand for the number of multiplications and additions respectively.
It should be noted that (16) is for general calculation of the arithmetic complexity of

radix-2 DIT algorithm using single butterfly; thus ±1 are considered as a twiddle factor that is
counted as a multiplication. The total number of multiplications and additions could be reduced
further using more than one butterfly.

The arithmetic complexities given by (16) are recursive. To obtain complexity in a
closed form, the initial values of these complexities are required. In this case, the initial values
can be the number of operations that are needed by length-4 DHTs-II, which are equal to
M(4)=2 for multiplications and A(4)=6 for additions. Solving (16) by repeated substitution of the
initial values and using multiple butterflies, we get:
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A comparison has been made between this algorithm and Hu’s radix-2 DIT algorithm
[11] in terms of number of multiplications and additions, as shown in Table 1. The result of this
comparison reveals that the total number of multiplications and additions of the proposed
algorithm is better than Hu’s algorithm. Furthermore, comparison in terms of structural
complexity for the signal flow graphs of the latter [Figure 1 of 11] with the former shown in
Figure 2, we can easily deduce a high regularity and structural simplicity of the developed
algorithm in contrast to Hu’s algorithm.

Table 1. Comparison of computational complexity for decimation-in-time DHT-II algorithms
Transform
length N

Proposed Algorithm Hu’s Algorithm [11]
Mults. Adds. Total Mults. Adds. Total

8 10 22 32 8 28 36
16 34 66 110 28 84 112
32 98 178 276 84 220 304
64 258 450 708 228 540 768
128 642 1090 1732 580 1276 1856
256 1538 2562 4100 1412 2940 4352
512 3586 5890 9476 3332 6652 9984

1024 8194 13314 21508 7684 14844 22528

.

4. Conclusion
This paper has been focused on a new fast algorithm for direct computation of the DHT-

II transform. The presented radix-2 decimation-in-time GFHT algorithm has a regular signal flow
graph that provides flexibility for different transform lengths, substantially reducing the arithmetic
complexity as compared with the indirect algorithms. The developed algorithm has been
implemented through the DIT approach, and its computational complexity is analyzed and
compared with existing algorithms, showing its significantly reduce the structural complexity with
a better indexing scheme and ease implementation.
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